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Screening potential in lattices and high-density plasmas

X. H. Do, M. Amari, J. Butaux, and H. Nguyen
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(Received 16 July 1997; revised manuscript received 18 Novembep 1997

The screening potential in a body-centered-cubaxr) crystal has been calculated in detail and expressed as
a series expansion including the hexadecapole term for small displacements from the equilibrium configuration
and also as a closed-form fitting numerical lattice sums performed for the larger ones. We have shown that this
closed form is an even function of the interionic distaft@and is characterized by an accuracy that is two
orders of magnitude higher than that given by Salpeter and Van Aatnophys. J155 183(1969]. As an
application of these results we have considered extremely high-density plasmas characterized by the coexist-
ence between a fluid and a Wigner bcc crystal. In particular, we have shown that the screening potential
obtained on the basis of the short-range-order effect, the Widom series expansion, and the lattice calculation
near the equilibrium distance is in close agreement with recent Monte Carlo simulations.
[S1063-651%98)05503-2

PACS numbeps): 52.25-b, 31.15-p, 32.70-n

I. INTRODUCTION R
h =Co—Cy 3 (©)
The knowledge of screening potentials is connected with
outstanding problems in astrophysics such as the enhancghere the coefficient€, and C, depend slightly o™ and
ment factor for thermonuclear reaction rates in stellar interisatisfy the relationship
ors[1,2]. More recently, renewed interest has been mainly
stimulated by experiments where high-power laser beams Co_z\/c—lz 0. (4
produce plasmas with an electron density as high as
10%*cm™3. To this end, the use of quadrupled laser fre-It is remarkable[16,17] that Eqgs.(3) and (4) fit the one-
guency[3] and the conversion of the laser light into soft-x- component Monte Carlo data as well as the two-component
ray pulseg4] are the two most efficient methods. In such ones.
plasmas, screening effects can deeply modify atomic proper- In our previous work$7,8] we have suggested a two-ion
ties[5,6] and induce formation of quasimoleculgs-9]. I center model for studying the electronic bound states of
addition, because of its frequent occurrence in entangled nujuasimolecules in high-density plasmas. In particular, possi-
merical codes concerning the most important problems imly different spectral components and a drastic reduction in
dense plasmas such as equilibrium rate equations and lirgtark shifts have been pointed out. Indeed, this screening
broadening, the screening potential needs to be expressedaeffect is complete when the interionic distance reaches the
a simple form with a clear physical meaning for characterisvalue 1.7@. In the present paper we intend to evaluate the
tic parameters. Outside the validity domain of the Debyescreening potential in extremely high-density plasmas. To
Huckel theory, the most reliable data for screening potentiathis end, lattice sums including 9Gons are performed in
Vs have been deduced from Monte Carlo computat{[ds-  order to obtain the potential energy as a functiofiRaf Sec.
14] of the radial distribution function II. An analytical form for the screening potential in plasmas
is then given in Sec. Ill, where general properties of fluids
a [18] and continuity conditions with respect to the screening
g=ex;{—l“(§—h) , () potential in lattices are systematically used. This analytical
whereR is the distance between two given reacting idns,
=(Ze)%/akT, a=(3/47n)Y3 andn are the coupling param-

form is proved to be in close agreement with Monte Carlo
computationg14]; it is especially useful for examining how

eter, the ion-sphere radius, and the ion density, respectivel

In Eq. (1), h is the screening potential in units oZ €)?/a,

quasimolecules are formed and what their effect on spectral
already used in Refl5]:

line shapes is when spectroscopic diagnostics are performed
or the ablation layers of solid targets irradiated by intense
laser beamg3]. Also a discussion will be made about its
discrepancy in comparison with the pioneering regal
(Z0)? which is based on the harmonic-oscillator potential in lat-

Vg= - h. 2 tices.

] ] Il. SCREENING POTENTIAL IN LATTICES
By analyzing the results of Brush, Shalin, and Te[lE0], De

Witt, Grabosk, and Coopd.6] found empirically that out- Consider first the “static lattice approximation” in which
side the zero-separation region and For 1, h can be accu-  Only two nearest-neighboring ions 1 and 2 move. Their rela-
rately expressed in the linear form tive position vector changes from the equilibrium ved&p
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to the final oneR while all other ions plus the center of mass Which we can verify by using the lattice symmetry in E6).

of the reacting pair are “frozen” at their initial position. The and the fact that the screening potentfal does not change
screening potential is obtained by equating the effective powhen we permute the positions of the reacting ions.
tential (Ze)%/R— Vs to the energy change of the whole sys- A way for improving the harmonic-oscillator approxima-
tem when the reacting ions move. Then, by taking into aclion consists in starting from the multipole expansion of Eq.

count the lattice symmetry, this screening potential can bé6) and arranging conveniently the ions in spherical shells. In
written in units of Ze)2/a as particular, we have shown that the quadrupole term cancels

while the hexadecapole one is given by
a 7 d
h<SL>=—{1+2<Q——1>—0 ——s—}, (5) 7
d |R1,— /2| °d* Tb S(v)= 1—(; [3c*—5(ci+ci+ch]+0(c®), (11

<

whered=|R;J, v =R;,— R, andf,=d%4a®. In addition to
the ion-sphere radius and the nearest-neighbor distartte
we have introduced the lattice constdmt For the body-
centered-cubigbcc and simple cubic lattice we recall the
relationship d=bv3/2=(7v3)¥3%a (=1.758%) and d=b
=(4m/3)*%a (=1.6122), respectively. The second term on de
the right-hand side of Eq5) can be understood as resulting

from the interaction of each ion of the interacting pair with ) A
the neutralizing background of the other. The third term isShOW thatS(¢) is an even function of and completely de-

due to the background restoring force and the last ondned Dy its numerical values fafe[0,1]. The lattice sum
—Sdb comes from the reaction of all surrounding ions (6) ‘g‘”th €1 =C,=C3=¢/2 has been performed by considering
when ion 1 or 2 leaves its equilibrium position. He8ds a ~ 64Po (Po=150) nearest ions. The contribution of the far-off

very symmetric lattice sum, which depends on the latticd®nS With p=p is of the order of magnitude o&f/d*p)*
structure according to and has been included by using a reliable extrapolation pro-

cess. Finally, we obtain

where c=|7|/b and the numerical factolo=23.328 359

x 10" has been deduced from a lattice sum ovet ibds.

To our knowledge, the fourth-order result given in Efyl)

is a new one.

Henceforth, for the comparison purpose with the high-
nsity plasma case, we consider only longitudinal displace-

mentsﬁ=§§12, whereé=1—-R/d. Equations(9) and (10)

1 1
S=2b>, ( — . (6) S(é)=5£4(1.456 157 1.276 5842+ 5.523 994 10 24
#1 \[Ry—v/2]  |Ryjl
+7.218 356< 107 2£5+2.019 800< 10 3¢8
We note that the reduction of the effective potential to its +7.140 663 10-3£19), (12)

anisotropic harmonic-oscillator terfieqg. (10) in Ref. [1]]
can be obtained by adoptir§=0 in Eq. (5). For going be-
yond this second-order approximation, we expnéﬁsindz?
in terms of the lattice unit vecto®,, €,, andé&;, i.e.,

where the absolute error of the polynomial in parentheses is
less thant 3x 10 . We note that the first term in E¢12)
is in agreement with the hexadecapole approximatidn:

N b
Rlizi (Pi1€1+ Pi2€2+ Pis€s) (7) S(€)=(70/16)£*+O(£°).

d Then, for longitudinal displacements, the screening poten-
an tial in lattices(5) can be written as
=R~ R=Db(c16;+C,8,+ C363), (8)

w21

Q(SL)_ 2%) §2}' (13)
and perform the lattice suri®) over all ionsi with reduced §

coordinates {§;1,pi»,Piz) #(0,0,0). In addition, whert" in- (sL)_ )

creases up & .= 172, dense plasmas freeze first into bccWhere 67-'= 6o+ 3(£)(d/bé") expresses that the back-
configuration[19] and consequentlp.;,pi,,pis in EQ. (7) ground restoring effect is amplified by the surrounding fro-

are all even or odd integers. We point out the useful relationZen ions, which tend to prevent the reacting ions from large
ships displacements. Equatiofld) is particularly accurate fog

<1; its error is indeed less than X30 ’£? owing to the
S(—5)=S(%) (9) precision of Eq(12).
When the variablep=R/d is used instead of=1- 7,
and accounting for the symmetry properties in E(®. and (10),
Eq. (13) takes the form

2§12_ 1_/) 2
d

> a
S(2R,— )+ =

2
5 h(SL):E 3+7° @3

_ 2
d 1_7]2 4 (1+77)

+ —=
V3|7

8d

V3
+ 10 - - _
V3|2Riy 7] (10 7 [S(1+7)+S(1-7)]
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1\ amplitude of the first peak of the radial distribution function
=| ——| (1.391 166-0.258 399, g and gives a measure of the short-range-order effect. In
mv3 accordance with MC calculations[11,12 for &
—0.162 060;*+0.034 88%°— 0.005 798,° = (1)In Grax, we suggest the fit
+0.000 216;%9), 14 r
07 (14 5=10.544-0.401 |n1_60 X102, T e[140,20Q.
which shows clearly that the screening potential in lattices, (16)

like in fluids[18], is an even function dR. Equationg13) or
the above-mentioned symmetry property is violated and alsgg h="1/r ot 8, anddhidr= — 12 _ forr=r,.), the
the error is estimated to be2x 1074, linear form (3)n\113>i(th ’ mex meu

Ill. SCREENING POTENTIAL IN FLUID PLASMAS

2 1
Co=—+6, Ci=—— 1
Despite its high accuracy resulting from the very large O F max Yoz 9

number of ions considered in lattice sums, we must keep in

mind that Eqs(13) or (14) applies only to small displace- is a useful approximation foh in the interval where the
ments with typically|¢|<0.25. For larger values dt| vio-  second derivativel?h/dr? is small (see Table). From Eq.
lating Lindemann’s criterion, the static lattice assumption(17) we can see that,—2\/C,= 4 is in agreement with Eq.
used in Sec. Il is no longer valid. On the contrary, the sur{4) in the sense thatis very small in comparison t6,. We
rounding lattice points tend to polarize into the relaxed ponote that Eq(17) is free from the restrictive lattice assump-
sitions appropriate to each given distance between the reaaion [23] r,,=d/a, i.e., h, =(a/d)(2—ar/d), and conse-
ing ionsR=(1—£)d= »d. With the purpose of generalizing quently applies to plasmas wilh<I,..

Eq. (13) to short interionic distances, according to Widom's  The second characteristic property of strong-coupling
work [18], we can expand the screening potentiain the  plasmas consists in a close agreement betvieffq. (15)]

following power series irR?: and h(®Y [Eq. (13)] when the latter is valid, i.e., fof’
a =Tpee=172[19] and| £ <0.25. Indeed, as shown in the Ap-
= (g.— 2 4_ 64 ... pendix, the discrepancy betweanand h(®Y can be written
N=g (B0 aum +azy —agy'+ ) in the form
=h0—h1r2+h2r4—h3f6+"' ) (15)

h—h®Y=(—1)Pay(£—£)P+O(&PTY), (18)
where in addition tay=R/d we have introduced the variable
r=R/a for making easier the comparison with other worksWhere&y is a value of¢ chosen in the allowed interval and
[14,15,22. ap, With p=2, is a linear combination of the coefficients
The coefficientsa, (hy) in Eq. (15) are all functions of’ ~ 80,81,8z,.--,8p- In EQ.(18), O(¢P*?) is of the same order
except fora,, which is §,=d3/4a3=1.3603 f,=0.25) ac- Of magnitude ag®** and cancels exactly fof=¢,. As a
cording to Eq(5) and Ref[20]. The coefficienf is defined ~ result, we can see that the discrepaiicy htY cancels at
by the increment of the chemical potential for the reactingé= &o and is of the order of magnitude ¢ &,)P or £&”** for
pair before and after the nuclear fusion; its dependence on £# £ In addition, there ar@ conditions that underlie Eq.
is weak but very real. Recently, using a different Monte(18) and giveag,a;,a,,...,a, as functions of§,. For the
Carlo (MC) method[14], Ogata has obtained accurater) purpose of a comparison with available data we consider
results down to smalR. Note, however, that Ogata’s values Principally the cas@=3, i.e., the series expansi¢id) trun-
for ag are 1% larger than those given by Rosenfdlf]. In  cated at the fourth term. In Table | we give the coefficients
part this is because in Ogata’s analysis he uses a fit to on@o,a2,a3 of the screening potentidl and thoseC,,C; of
component plasma fluid energy dataNkT that is slightly ~ the related linear approximatiom_ [Egs. (3) and (17)] as
inaccurate in comparison to the more recent d2d$ Con-  functions of the distanc®,= 7.d/a, which corresponds to
cerning the coefficiend,, the best available estimate is due the best agreement betwediiz) and h(Y(5) in accor-
to Rosenfeld[15], who considered the continuity between dance with Eq(18). A careful examination of Table | shows
MC results[14] and the three-term series expansion for thethat §=Cy—2/C;=(1/T')In gnay is the only parameter re-
amplitude and its first two derivatives. However, it is inter- ally sensitive to a variation of, . Indeed, wheny, increases
esting to note that Rosenfeld’s valag=0.52 (h,=0.031) from 1.1500 to 1.1790, we note thatincreases by 62%
for I'=160 would change to a larger number if he had usedvhile, for examplea, increases only by 0.84%. This sensi-
a nonzero value of;. The latter coefficient has been con- tive variation of the constant of the short-range-order effect
sidered by Alastuey and Jancovig2], who used the limited is useful for selecting the suitable joining poing between
MC g(R) data available in 1977 and fouray=0.657 (, the fluid (h) and lattice h(®Y) screening potential.
=0.039) anda;=0.224 h;=0.0043) forn[0.00,0.91. The most direct application of our present calculation
In the present work, we will determine the coefficients consists of considering the coupling parameié+172,
ag, ay, andas in Eq.(15) by using the screening potential in which characterizes the coexistence between a Wigner bcc
lattices (13) and two characteristic properties of strong- crystal and a fluid plasmgl9]. Equation(16) gives éd/a
coupling plasmas. The first one concemygs,, which is the ~ =0.906x 10 2 and supports the choicg,=1.1617 and the
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TABLE I. Screening potential parameters for plasmas in liquid-crystal equilibrium. ler€(, andC;
denote (/a)s, (d/a)C,, and @/a)?C,, respectively. Likewise, the relationship,=(d/a)?*h,
(k=0,1,2,3) is to be used for deducirg from a, in Egs. (15 and (19). We note that the constant of
short-range-order effe@= (1/I')In gya=Co—2\/C; [see Eqgs(17)] is consistent with Monte Carlo daf&q.

(16) with I'=172] provided the valuey;=1.1617 and those in the corresponding third column are adopted.
The last column is given for referring to the Salpeter and Van Horn's constgna""t=1.8597 f,
=1.0573).

point of maximum
agreement between A 79=1.1500 1.1560 1.1617 1.1700 1.1790
and AV

coefficient of
agreement between A — a3 =1.3003 1.2684 1.2391 1.1988 1.1571
and A5V

ag=1.8443 1.8474 1.8505 1.8549 1.8597
a,=0.7493 0.7442 0.7393 0.7326 0.7256

a3;=0.2274 0.2248 0.2223 0.2190 0.2155

coefficients of
Widom’s series
expansion
(a;=6,=1.3603)

7-=0.6860 0.6893 0.6925 0.6970 0.7019

location and slope at
the inner inflection m_=1.1061 1.1104 1.1144 1.1201 1.1263
point
location and slope at 7, =0.9207 09216 09223 09234 09243
the outer inflection m,=1.0683 10740 10793  1.0869  1.0951
point

Tnax =0.9647 0.9625 0.9603 0.9572 0.9539
parameters of the C!=1.0746 1.0795 1.0843 1.0914 1.0991
linear approximation C}=2.0806 2.0786 2.0917 2.0997 2.1087

1008" =0.7364 0.0082 0.9060 1.0384 1.1957

corresponding th_ird column in Table I._So we can yvrite_ the=1.6891, which is appreciably shorter than the nearest-
screening potentiglL5) and the related linear approximation neighbor distance in the lattia®’a=1.7589. In addition to

(3) in the form the values 1.0843, 1.0793, and 1.1144 of the derivative
1\ dh/d#n at 7,,=0.9603, the outer £, =0.9223) and inner

h=< (1.8505- 672+ 0.7393)*— 0.2223;°) (7_-=0.6925) inflection points are the signatur_e of the
V3 agreement between Eq4d.9) and (20) over a large interval

B 2 4 approximately equal t0.407max-
=1.0521-0.25"+0.043 92~ 0.004 268", In comparison with Alastuey and Jancovici's resyig],
r[0.0,2.0 (19) we note a good agreement fag and a discrepancy of 11%
for a,. Another difference consists in the validity interval of
and r, which is[0.0,2.4 for Eq. (19) instead 0f{0.0,1.9 for Eq.
1\ (24) in Ref.[22].
h, = ( _) (2.0917- 1.0843;)=1.1892- 0.3505, Nevertheless, the most appropriate comparison we would
V3 make consists of considering Ogata, lyetomi, and Ichimaru’s
(200 work [14] where relative motions of neighboring sites in the
respectively. We note that the first peak of the radial distri-bcc lattices have been analyzed through the Monte Carlo
bution function is located at the distanBg,,/a=(7mad)/a  sampling method. These authors have given

1
O _ 1.1830-0.3500 +  exp(13.2)r—22.0, re[0.7,2.0 -

1.0605-0.252, re[0.0,0.7.
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static-lattice mod€lEq. (11) in Ref.[1]]. [See Eq(14) and
related comments of the present wark.

(i) In Eqg. (22) the term due to background restoring
forces —3.043%?2 is too large in comparison to the exact
one — 6y7? (6,=1.3603).

In a large interval of intermediate values gf Fig. 1
shows thath(SV") is 6% smaller than our calculated[Eq.
(19)] and Monte Carlo’s resultl4].

In a more recent work23], h®V") has been modified in
such a way to involve the exact background force effect
— 0o7°. Nevertheless, the improvement is not really conclu-
sive because conditioris) and (i) have not been taken into
account.

1.8

-
[}

-
F-S

-
N

-

IV. CONCLUSION

Screening potential (in units of Z2e?/d )

Y This paper i_s concerned with the screening potemﬁﬁ)
0 0.2 04 0.6 0.8 1 _of extremely hlgh—densny plasmas that occur in stellar pb-
Interionic distance (in units of d = 7.7589 a) jects such as white dwarfd] and also in laboratory experi-
ments such as ablation of crystal targets when the latter are
FIG. 1. Screening potential of plasmas in liquid-crystal equilib- Irrad_lated by Int_ense f’:\nd short-wavelength laser beams. C(_)n-
fium. We note that the present theory leadinghtoy)(—), Eq.  €"ing the SP in lattices, we have shown that the harmonic-
(19), is in close agreement with Monte Carlo simulatioiist], ~ ©Scillator approximation can be improved by introducing the
h©N(7) (OO0), especially in the intervahe[0.3,1.1Q. The dis- hexadecapole term, which has been calculated by means of a
crepancy betweeh(7) and the lattice screening potentiat—-), suitable association of ionic points in spherical shells. This
Eq. (13), increases rapidly outside the joining zone<(0.9). The  term is in agreement with the lattice sums performed for
Salpeter and Van Horn’s screening potentiéfP(5)(~-—) is  arbitrarily large longitudinal displacements and® I@arest
smaller tharh(7) andh(©"(%) by 6%. ionic points. The present SP in lattices is, like in fluids, an
even function oR and is characterized by an accuracy that is
It is interesting to note that the coefficierfy— §=1.1840  of two orders of magnitude higher than that of Ef1) in
and C,;=0.3505 in Eq.(20) are in agreement with those of Ref.[1]. It is the basis of the joining process leading to a
the linear part in Eq(21). Indeed, Fig. 1 shows that our precise Sh(7) that proves to be very close to the one given
analytical resul{19) and the Monte Carlo results are in very by Monte Carlo simulationgl4]. Concerning the linear form
good agreement, in particular in the interva[0.7,2.0, h.=Co—Cyr exhibited in most Monte Carlo simulations,
where the discrepancy between[Eqg. (19)] and its linear we have shown that the relationshiiy~2+/C; merely re-
approximationh, [Eg. (20)] is less than 0.5%. Concerning sults from the fact thalt, is a common linear approximation
the agreement betweem and hSY in the vicinity of the  for the “augmented Coulomb potentiali;= 1/ + 6 and the
equilibrium position, Fig. 1 and a numerical check show thatSP h of which the second derivative is very small f&r
100(1—-h(Y/h) decreases from 0.7 te-0.4 when 7 in- #0. This relationship is discussed in terms of the short-
creases from 1 to 1.20. This results in fact from the conditiorfange-order effect(I’) instead of the harmonic oscillations
h—hSY~ — a4(5—1.1617§ occurring in Eq.(18). in lattices and is valid for a large range Bfdown toI'~2
In comparison with the screening potential resulting fromwith 6~0.
the pioneering relaxed lattice model of Salpeter and Van To obtain an accurate closed form for the SP, which is
Horn [Eqg. (14) in Ref. [1]]: necessary to many numerical codg®pulation rates, line
broadening, formation of transient molecules, etit.is use-
1\ ful to generalize the present joining method to other plasma
h(SVH — ( _) (1.8597- 3.0439%2+ 3.6540;° conditions. Also, when the two reacting ions are very close,
V3 corrections due to bound electron quantum eff¢@isand
free-electron inhomogeneify,8] are to be introduced.

—1.4697%), (22

APPENDIX: SOLUTION FOR THE JOINING PROBLEM
(i) For the reference potential aj~1, the harmonic- BETWEEN SCREENING POTENTIALS IN LATTICES

lattice potential is used in Eq22) instead of the more accu- AND IN FLUID PLASMAS

rate one[Egs. (13) or (14) given in Sec. ]. In addition, the With the purpose of joining the screening potential in
linear approximation forhY™ and 7~1 results directly  fiuid plasmas with that in static lattices we write their dis-
from that of the static-lattice potential{S?=(a/d)(2—7),  crepancy in the form
while Eq.(20) has been deduced self-consistently by consid-
ering the maximum of the radial distribution. h=hSY=qy— ayé+ aré2— agt3+ -+ +(—1)Pa,&P

(i) The right-hand side of Eq22) is not an even function P
of 7 [18]. This violation of symmetry is also observed in the +0O(&PHY), (A1)

we mention the following differences:
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where, according to Eq$13) and (15), ag,ay,...,a, are  determinea,,as,...,a, as functions of,. To finish solving
linear combinations ofa;=#, and unknown coefficients the problem, we require that f@r=¢&,, O(&°*1)=0, i.e.,
ag,a2,83,...,ap,

ap=—(1+6p—ag) +ay—az+a,+---+(-1)Pa, h—hbY=0. (A4)
p 2P
ay=—(26p—1)+4a;~6az+8a,+ - +(-1)° 77 ap, Equation(A4), together with Egs(13) and (15) in the main

text, serves to expresg, in terms oféy,a,,as,..., anda, .
1 For p=3 in particular we have
Ao=— 7 + 6a2_ 15a3

2
2p(2p-1) _ 1150073 e 3, O
+28a4+...+(_1)pTap’ a2 A 2 10 00 80 §0+16§O ’
@ —1+4a 20a;+56a,+ -+ (—1)P (2p)! 1 2 3 7
3Ty 2— Az T N A PN TR
2 (2p—23)!3! a3=K[00— 5—2( fo— g §0+§§4,
a,=0.001 107 a,— 15a;
F 70t~ 2P a2) A=2- 1460+ 15, (AS)
4 (2p—4)141 “P°
In Eqg. (A1), O(&P*1) is of the same order of magnitude as while Eq.(A4) results in
&1 Here we note that for a given valdg, Eq. (A1) can
take the form of Eq.18) in the text, provided thep—1 oL ) . .
following conditions are ensured: ap=hSY(&y) + Oo(1— &9)*—ap(1— &) +az(1-&)°,
i
ga (a0 aét apt® =+ (~1)Paptf]=0 as=1+4a,—20a;. (A6)

for ¢=¢&,, all ie[lp—1]. (A3) . o )
° P For suitable values ofjp=1—¢&,, the coefficients in Egs.

By taking into account EqA2), these conditions allow us to (A5) and (A6) are given in Table I.
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