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Screening potential in lattices and high-density plasmas

X. H. Do, M. Amari, J. Butaux, and H. Nguyen
Laboratoire de Spectroscopie Atomique et Ionique, Universite´ Paris-Sud, 91405 Orsay Cedex, France

~Received 16 July 1997; revised manuscript received 18 November 1997!

The screening potential in a body-centered-cubic~bcc! crystal has been calculated in detail and expressed as
a series expansion including the hexadecapole term for small displacements from the equilibrium configuration
and also as a closed-form fitting numerical lattice sums performed for the larger ones. We have shown that this
closed form is an even function of the interionic distanceR and is characterized by an accuracy that is two
orders of magnitude higher than that given by Salpeter and Van Horn@Astrophys. J.155, 183 ~1969!#. As an
application of these results we have considered extremely high-density plasmas characterized by the coexist-
ence between a fluid and a Wigner bcc crystal. In particular, we have shown that the screening potential
obtained on the basis of the short-range-order effect, the Widom series expansion, and the lattice calculation
near the equilibrium distance is in close agreement with recent Monte Carlo simulations.
@S1063-651X~98!05503-2#

PACS number~s!: 52.25.2b, 31.15.2p, 32.70.2n
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I. INTRODUCTION

The knowledge of screening potentials is connected w
outstanding problems in astrophysics such as the enha
ment factor for thermonuclear reaction rates in stellar int
ors @1,2#. More recently, renewed interest has been mai
stimulated by experiments where high-power laser bea
produce plasmas with an electron density as high
1024 cm23. To this end, the use of quadrupled laser f
quency@3# and the conversion of the laser light into soft-
ray pulses@4# are the two most efficient methods. In su
plasmas, screening effects can deeply modify atomic pro
ties @5,6# and induce formation of quasimolecules@7–9#. In
addition, because of its frequent occurrence in entangled
merical codes concerning the most important problems
dense plasmas such as equilibrium rate equations and
broadening, the screening potential needs to be express
a simple form with a clear physical meaning for characte
tic parameters. Outside the validity domain of the Deb
Hückel theory, the most reliable data for screening poten
VS have been deduced from Monte Carlo computations@10–
14# of the radial distribution function

g5expF2GS a

R
2hD G , ~1!

whereR is the distance between two given reacting ionsG
5(Ze)2/akT, a5(3/4pn)1/3, andn are the coupling param
eter, the ion-sphere radius, and the ion density, respectiv
In Eq. ~1!, h is the screening potential in units of (Ze)2/a,
already used in Ref.@15#:

VS5
~Ze!2

a
h. ~2!

By analyzing the results of Brush, Shalin, and Teller@10#, De
Witt, Grabosk, and Cooper@16# found empirically that out-
side the zero-separation region and forG.1, h can be accu-
rately expressed in the linear form
571063-651X/98/57~4!/4627~6!/$15.00
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hL5C02C1

R

a
, ~3!

where the coefficientsC0 andC1 depend slightly onG and
satisfy the relationship

C022AC150. ~4!

It is remarkable@16,17# that Eqs.~3! and ~4! fit the one-
component Monte Carlo data as well as the two-compon
ones.

In our previous works@7,8# we have suggested a two-io
center model for studying the electronic bound states
quasimolecules in high-density plasmas. In particular, po
bly different spectral components and a drastic reduction
Stark shifts have been pointed out. Indeed, this screen
effect is complete when the interionic distance reaches
value 1.70a. In the present paper we intend to evaluate
screening potential in extremely high-density plasmas.
this end, lattice sums including 109 ions are performed in
order to obtain the potential energy as a function ofR in Sec.
II. An analytical form for the screening potential in plasm
is then given in Sec. III, where general properties of flu
@18# and continuity conditions with respect to the screen
potential in lattices are systematically used. This analyti
form is proved to be in close agreement with Monte Ca
computations@14#; it is especially useful for examining how
quasimolecules are formed and what their effect on spec
line shapes is when spectroscopic diagnostics are perfor
for the ablation layers of solid targets irradiated by inten
laser beams@3#. Also a discussion will be made about i
discrepancy in comparison with the pioneering result@1#,
which is based on the harmonic-oscillator potential in l
tices.

II. SCREENING POTENTIAL IN LATTICES

Consider first the ‘‘static lattice approximation’’ in whic
only two nearest-neighboring ions 1 and 2 move. Their re
tive position vector changes from the equilibrium vectorRW 12
4627 © 1998 The American Physical Society
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to the final oneRW while all other ions plus the center of ma
of the reacting pair are ‘‘frozen’’ at their initial position. Th
screening potential is obtained by equating the effective
tential (Ze)2/R2VS to the energy change of the whole sy
tem when the reacting ions move. Then, by taking into
count the lattice symmetry, this screening potential can
written in units of (Ze)2/a as

h~SL!5
a

d F112S d

uRW 122nW /2u
21D 2u0

nW 2

d22S
d

bG , ~5!

whered5uRW 12u, vW 5RW 122RW , andu05d3/4a3. In addition to
the ion-sphere radiusa and the nearest-neighbor distanced,
we have introduced the lattice constantb. For the body-
centered-cubic~bcc! and simple cubic lattice we recall th
relationship d5b)/25(p))1/3a (51.7589a) and d5b
5(4p/3)1/3a (51.612a), respectively. The second term o
the right-hand side of Eq.~5! can be understood as resultin
from the interaction of each ion of the interacting pair w
the neutralizing background of the other. The third term
due to the background restoring force and the last
2Sd/b comes from the reaction of all surrounding io
when ion 1 or 2 leaves its equilibrium position. HereS is a
very symmetric lattice sum, which depends on the latt
structure according to

S52b(
iÞ1

S 1

uRW 1i2nW /2u
2

1

uRW 1i u
D . ~6!

We note that the reduction of the effective potential to
anisotropic harmonic-oscillator term@Eq. ~10! in Ref. @1##
can be obtained by adoptingS[0 in Eq. ~5!. For going be-
yond this second-order approximation, we expressRW 1i andvW
in terms of the lattice unit vectorseW1 , eW2 , andeW3 , i.e.,

RW 1i5
b

2
~pi1eW11pi2eW21pi3eW3! ~7!

and

nW 5RW 122RW 5b~c1eW11c2eW21c3eW3!, ~8!

and perform the lattice sum~6! over all ionsi with reduced
coordinates (pi1 ,pi2 ,pi3)Þ(0,0,0). In addition, whenG in-
creases up toGbcc5172, dense plasmas freeze first into b
configuration@19# and consequentlypi1 ,pi2 ,pi3 in Eq. ~7!
are all even or odd integers. We point out the useful relati
ships

S~2nW !5S~nW ! ~9!

and

S~nW !1
p

2 S nW

dD 2

1
8d

)unW u
5S~2RW 122nW !1

p

2
S 2RW 122nW

d
D 2

1
8d

)u2RW 122nW u
, ~10!
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-
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which we can verify by using the lattice symmetry in Eq.~6!
and the fact that the screening potential~5! does not change
when we permute the positions of the reacting ions.

A way for improving the harmonic-oscillator approxima
tion consists in starting from the multipole expansion of E
~6! and arranging conveniently the ions in spherical shells
particular, we have shown that the quadrupole term can
while the hexadecapole one is given by

S~nW !5
7s

12
@3c425~c1

41c2
41c3

4!#1O~c6!, ~11!

where c5unW u/b and the numerical factors53.328 359
31021 has been deduced from a lattice sum over 109 ions.
To our knowledge, the fourth-order result given in Eq.~11!
is a new one.

Henceforth, for the comparison purpose with the hig
density plasma case, we consider only longitudinal displa
mentsnW 5jRW 12, wherej512R/d. Equations~9! and ~10!
show thatS(j) is an even function ofj and completely de-
fined by its numerical values forjP@0,1#. The lattice sum
~6! with c15c25c35j/2 has been performed by considerin
64p0

3 (p05150) nearest ions. The contribution of the far-o
ions with p>p0 is of the order of magnitude of (a2/d2p0)2

and has been included by using a reliable extrapolation p
cess. Finally, we obtain

S~j!5 1
10j4~1.456 15711.276 584j215.523 99431022j4

17.218 35631022j612.019 80031023j8

17.140 66331023j10!, ~12!

where the absolute error of the polynomial in parenthese
less than6331026. We note that the first term in Eq.~12!
is in agreement with the hexadecapole approximation~11!:

S~j!5~7s/16!j41O~j6!.

Then, for longitudinal displacements, the screening pot
tial in lattices~5! can be written as

h~SL!5
a

d F11j2S u~SL!2
1

22j D j2G , ~13!

where u (SL)5u01S(j)(d/bj2) expresses that the back
ground restoring effect is amplified by the surrounding fr
zen ions, which tend to prevent the reacting ions from la
displacements. Equation~13! is particularly accurate forj
,1; its error is indeed less than 1.531027j2 owing to the
precision of Eq.~12!.

When the variableh5R/d is used instead ofj512h,
accounting for the symmetry properties in Eqs.~9! and~10!,
Eq. ~13! takes the form

h~SL!5
a

d H 31h2

12h22
p)

4
~11h2!

2
)

4
@S~11h!1S~12h!#J
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5S 1

p)
D 1/3

~1.391 16020.258 399h2

20.162 060h410.034 887h620.005 798h8

10.000 210h10!, ~14!

which shows clearly that the screening potential in lattic
like in fluids @18#, is an even function ofR. Equations~13! or
~14! is recommended instead of Eq.~11! in Ref. @1# where
the above-mentioned symmetry property is violated and a
the error is estimated to be6231024.

III. SCREENING POTENTIAL IN FLUID PLASMAS

Despite its high accuracy resulting from the very lar
number of ions considered in lattice sums, we must kee
mind that Eqs.~13! or ~14! applies only to small displace
ments with typicallyuju,0.25. For larger values ofuju vio-
lating Lindemann’s criterion, the static lattice assumpti
used in Sec. II is no longer valid. On the contrary, the s
rounding lattice points tend to polarize into the relaxed p
sitions appropriate to each given distance between the re
ing ionsR5(12j)d5hd. With the purpose of generalizin
Eq. ~13! to short interionic distances, according to Widom
work @18#, we can expand the screening potentialh in the
following power series inR2:

h5
a

d
~a02a1h21a2h42a3h61••• !

5h02h1r 21h2r 42h3r 61••• , ~15!

where in addition toh5R/d we have introduced the variabl
r 5R/a for making easier the comparison with other wor
@14,15,22#.

The coefficientsak (hk) in Eq. ~15! are all functions ofG
except fora1 , which isu05d3/4a351.3603 (h150.25) ac-
cording to Eq.~5! and Ref.@20#. The coefficienta0 is defined
by the increment of the chemical potential for the react
pair before and after the nuclear fusion; its dependence oG
is weak but very real. Recently, using a different Mon
Carlo ~MC! method@14#, Ogata has obtained accurateg(R)
results down to smallR. Note, however, that Ogata’s value
for a0 are 1% larger than those given by Rosenfeld@15#. In
part this is because in Ogata’s analysis he uses a fit to
component plasma fluid energy dataU/NkT that is slightly
inaccurate in comparison to the more recent ones@21#. Con-
cerning the coefficienta2 , the best available estimate is du
to Rosenfeld@15#, who considered the continuity betwee
MC results@14# and the three-term series expansion for
amplitude and its first two derivatives. However, it is inte
esting to note that Rosenfeld’s valuea250.52 (h250.031)
for G5160 would change to a larger number if he had us
a nonzero value ofa3 . The latter coefficient has been co
sidered by Alastuey and Jancovici@22#, who used the limited
MC g(R) data available in 1977 and founda250.657 (h2
50.039) anda350.224 (h350.0043) forhP@0.00,0.91#.

In the present work, we will determine the coefficien
a0 , a2 , anda3 in Eq. ~15! by using the screening potential i
lattices ~13! and two characteristic properties of stron
coupling plasmas. The first one concernsgmax, which is the
,

o
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-
-
ct-

g

e-

e

d

amplitude of the first peak of the radial distribution functio
g and gives a measure of the short-range-order effect
accordance with MC calculations @11,12# for d
5(1/G)ln gmax, we suggest the fit

d5S 0.54420.401 ln
G

160D31022, GP@140,200#.

~16!

Denoting by r max the location of the first peak ofg ~g
5gmax, h51/r max1d, anddh/dr521/r max

2 for r 5r max!, the
linear form ~3! with

C05
2

r max
1d, C15

1

r max
2 ~17!

is a useful approximation forh in the interval where the
second derivatived2h/dr2 is small ~see Table I!. From Eq.
~17! we can see thatC022AC15d is in agreement with Eq.
~4! in the sense thatd is very small in comparison toC0 . We
note that Eq.~17! is free from the restrictive lattice assump
tion @23# r max5d/a, i.e., hL5(a/d)(22ar/d), and conse-
quently applies to plasmas withG,Gbcc.

The second characteristic property of strong-coupl
plasmas consists in a close agreement betweenh @Eq. ~15!#
and h(SL) @Eq. ~13!# when the latter is valid, i.e., forG
5Gbcc5172 @19# anduju,0.25. Indeed, as shown in the Ap
pendix, the discrepancy betweenh andh(SL) can be written
in the form

h2h~SL!5~21!pap~j2j0!p1O~jp11!, ~18!

wherej0 is a value ofj chosen in the allowed interval an
ap , with p>2, is a linear combination of the coefficien
a0 ,a1 ,a2 ,...,ap . In Eq. ~18!, O(jp11) is of the same order
of magnitude asjp11 and cancels exactly forj5j0 . As a
result, we can see that the discrepancyh2h(SL) cancels at
j5j0 and is of the order of magnitude (j2j0)p or jp11 for
jÞj0 . In addition, there arep conditions that underlie Eq
~18! and givea0 ,a1 ,a2 ,...,ap as functions ofj0 . For the
purpose of a comparison with available data we consi
principally the casep53, i.e., the series expansion~15! trun-
cated at the fourth term. In Table I we give the coefficien
a0 ,a2 ,a3 of the screening potentialh and thoseC0 ,C1 of
the related linear approximationhL @Eqs. ~3! and ~17!# as
functions of the distanceR05h0d/a, which corresponds to
the best agreement betweenh(h) and h(SL)(h) in accor-
dance with Eq.~18!. A careful examination of Table I show
that d5C022AC15(1/G)ln gmax is the only parameter re
ally sensitive to a variation ofh0 . Indeed, whenh0 increases
from 1.1500 to 1.1790, we note thatd increases by 62%
while, for example,a0 increases only by 0.84%. This sens
tive variation of the constant of the short-range-order effecd
is useful for selecting the suitable joining pointh0 between
the fluid (h) and lattice (h(SL)) screening potential.

The most direct application of our present calculati
consists of considering the coupling parameterG5172,
which characterizes the coexistence between a Wigner
crystal and a fluid plasma@19#. Equation~16! gives dd/a
50.90631022 and supports the choiceh051.1617 and the
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TABLE I. Screening potential parameters for plasmas in liquid-crystal equilibrium. Hered8, C08 , andC18
denote (d/a)d, (d/a)C0 , and (d/a)2C1 , respectively. Likewise, the relationshipak5(d/a)2k11hk

(k50,1,2,3) is to be used for deducinghk from ak in Eqs. ~15! and ~19!. We note that the constant of
short-range-order effectd5(1/G)ln gmax5C022AC1 @see Eqs.~17!# is consistent with Monte Carlo data@Eq.
~16! with G5172# provided the valueh051.1617 and those in the corresponding third column are adopt
The last column is given for referring to the Salpeter and Van Horn’s constanta05a0

(SVH)51.8597 (h0

51.0573).
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corresponding third column in Table I. So we can write t
screening potential~15! and the related linear approximatio
~3! in the form

h5S 1

p)
D 1/3

~1.85052u0h210.7393h420.2223h6!

51.052120.25r 210.043 92r 420.004 269r 6,

r P@0.0,2.0# ~19!

and

hL5S 1

p)
D 1/3

~2.091721.0843h!51.189220.3505r ,

~20!

respectively. We note that the first peak of the radial dis
bution function is located at the distanceRmax/a5(hmaxd)/a
i-

51.6891, which is appreciably shorter than the neare
neighbor distance in the latticed/a51.7589. In addition to
the values 1.0843, 1.0793, and 1.1144 of the derivat
dh/dh at hmax50.9603, the outer (h150.9223) and inner
(h250.6925) inflection points are the signature of th
agreement between Eqs.~19! and ~20! over a large interval
approximately equal to@0.40,hmax#.

In comparison with Alastuey and Jancovici’s results@22#,
we note a good agreement fora3 and a discrepancy of 11%
for a2 . Another difference consists in the validity interval o
r , which is @0.0,2.0# for Eq. ~19! instead of@0.0,1.6# for Eq.
~24! in Ref. @22#.

Nevertheless, the most appropriate comparison we wo
make consists of considering Ogata, Iyetomi, and Ichimar
work @14# where relative motions of neighboring sites in th
bcc lattices have been analyzed through the Monte Ca
sampling method. These authors have given
h~OII!5H 1.183020.3500r 1
1

r
exp~13.2Ar 222.1!, r P@0.7,2.0#

1.060520.25r 2, r P@0.0,0.7#.

~21!
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It is interesting to note that the coefficientsC02d51.1840
and C150.3505 in Eq.~20! are in agreement with those o
the linear part in Eq.~21!. Indeed, Fig. 1 shows that ou
analytical result~19! and the Monte Carlo results are in ve
good agreement, in particular in the intervalr P@0.7,2.0#,
where the discrepancy betweenh @Eq. ~19!# and its linear
approximationhL @Eq. ~20!# is less than 0.5%. Concernin
the agreement betweenh and h(SL) in the vicinity of the
equilibrium position, Fig. 1 and a numerical check show t
100(12h(SL)/h) decreases from 0.7 to20.4 whenh in-
creases from 1 to 1.20. This results in fact from the condit
h2h(SL)'2a3(h21.1617)3 occurring in Eq.~18!.

In comparison with the screening potential resulting fro
the pioneering relaxed lattice model of Salpeter and V
Horn @Eq. ~14! in Ref. @1##:

h~SVH!5S 1

p)
D 1/3

~1.859723.0439h213.6540h3

21.4697h4!, ~22!

we mention the following differences:
~i! For the reference potential ath'1, the harmonic-

lattice potential is used in Eq.~22! instead of the more accu
rate one@Eqs. ~13! or ~14! given in Sec. I#. In addition, the
linear approximation forh(SVH) and h'1 results directly
from that of the static-lattice potentialhL

(SL)5(a/d)(22h),
while Eq.~20! has been deduced self-consistently by cons
ering the maximum of the radial distribution.

~ii ! The right-hand side of Eq.~22! is not an even function
of h @18#. This violation of symmetry is also observed in th

FIG. 1. Screening potential of plasmas in liquid-crystal equil
rium. We note that the present theory leading toh(h)( ), Eq.
~19!, is in close agreement with Monte Carlo simulations@14#,
h~OII!~h! ~sss!, especially in the intervalhP@0.3,1.10#. The dis-
crepancy betweenh(h) and the lattice screening potential~–––!,
Eq. ~13!, increases rapidly outside the joining zone (h,0.9). The
Salpeter and Van Horn’s screening potentialh(SVH)(h)( –• – ) is
smaller thanh(h) andh(OII)(h) by 6%.
t

n

n

-

static-lattice model@Eq. ~11! in Ref. @1##. @See Eq.~14! and
related comments of the present work.#

~iii ! In Eq. ~22! the term due to background restorin
forces 23.0439h2 is too large in comparison to the exa
one2u0h2 (u051.3603).

In a large interval of intermediate values ofh, Fig. 1
shows thath(SVH) is 6% smaller than our calculatedh @Eq.
~19!# and Monte Carlo’s results@14#.

In a more recent work@23#, h(SVH) has been modified in
such a way to involve the exact background force eff
2u0h2. Nevertheless, the improvement is not really conc
sive because conditions~i! and ~ii ! have not been taken into
account.

IV. CONCLUSION

This paper is concerned with the screening potential~SP!
of extremely high-density plasmas that occur in stellar o
jects such as white dwarfs@1# and also in laboratory experi
ments such as ablation of crystal targets when the latter
irradiated by intense and short-wavelength laser beams. C
cerning the SP in lattices, we have shown that the harmo
oscillator approximation can be improved by introducing t
hexadecapole term, which has been calculated by means
suitable association of ionic points in spherical shells. T
term is in agreement with the lattice sums performed
arbitrarily large longitudinal displacements and 109 nearest
ionic points. The present SP in lattices is, like in fluids,
even function ofR and is characterized by an accuracy tha
of two orders of magnitude higher than that of Eq.~11! in
Ref. @1#. It is the basis of the joining process leading to
precise SPh(h) that proves to be very close to the one giv
by Monte Carlo simulations@14#. Concerning the linear form
hL5C02C1r exhibited in most Monte Carlo simulations
we have shown that the relationshipC0'2AC1 merely re-
sults from the fact thathL is a common linear approximatio
for the ‘‘augmented Coulomb potential’’hc51/r 1d and the
SP h of which the second derivative is very small forR
Þ0. This relationship is discussed in terms of the sho
range-order effectd~G! instead of the harmonic oscillation
in lattices and is valid for a large range ofG down toG'2
with d'0.

To obtain an accurate closed form for the SP, which
necessary to many numerical codes~population rates, line
broadening, formation of transient molecules, etc.!, it is use-
ful to generalize the present joining method to other plas
conditions. Also, when the two reacting ions are very clo
corrections due to bound electron quantum effects@7# and
free-electron inhomogeneity@7,8# are to be introduced.

APPENDIX: SOLUTION FOR THE JOINING PROBLEM
BETWEEN SCREENING POTENTIALS IN LATTICES

AND IN FLUID PLASMAS

With the purpose of joining the screening potential
fluid plasmas with that in static lattices we write their di
crepancy in the form

h5h~SL!5a02a1j1a2j22a3j31•••1~21!papjp

1O~jp11!, ~A1!

-
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where, according to Eqs.~13! and ~15!, a0 ,a1 ,...,ap are
linear combinations ofa15u0 and unknown coefficients
a0 ,a2 ,a3 ,...,ap ,

a052~11u02a0!1a22a31a41•••1~21!pap ,

a152~2u021!14a226a318a41•••1~21!p
2p

1!
ap ,

a252
1

2
16a2215a3

128a41•••1~21!p
2p~2p21!

2!
ap ,

a35
1

4
14a2220a3156a41•••1~21!p

~2p!!

~2p23!!3!
,

a450.001 1071a2215a3

170a41•••1~21!p
~2p!!

~2p24!!4!
ap . ~A2!

In Eq. ~A1!, O(jp11) is of the same order of magnitude a
jp11. Here we note that for a given valuej0 , Eq. ~A1! can
take the form of Eq.~18! in the text, provided thep21
following conditions are ensured:

di

dj i @a02a1j1a2j22•••1~21!papjp#50

for j5j0 , all i P@1,p21#. ~A3!

By taking into account Eq.~A2!, these conditions allow us to
s.

o

se

hie
.

u-

g

ys
determinea2 ,a3 ,...,ap as functions ofj0 . To finish solving
the problem, we require that forj5j0 , O(jp11)50, i.e.,

h2h~SL!50. ~A4!

Equation~A4!, together with Eqs.~13! and ~15! in the main
text, serves to expressa0 in terms ofj0 ,a2 ,a3 ,..., andap .
For p53 in particular we have

a25
1

D F5u023

2
210S u02

37

80D j01
55

16
j0

2G ,

a35
1

D Fu02
2

3
22S u02

3

8D j01
7

8
j0

2G ,
D52214j0115j0

2, ~A5!

while Eq. ~A4! results in

a05h~SL!~j0!1u0~12j0!22a2~12j0!41a3~12j0!6,

a35 1
4 14a2220a3 . ~A6!

For suitable values ofh0512j0 , the coefficients in Eqs
~A5! and ~A6! are given in Table I.
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